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Abstract: - The paper contains an investigation results in the heteroclinic dynamics of a magnetic (magnetized) 

dual-spin spacecraft (DSSC) in the geomagnetic field at the realization of the orbital motion of its mass centre 

along an equatorial circular orbit. Exact heteroclinic analytical solutions are obtained. These analytical exact 

solutions are used for the research of the DSSC perturbed motion and its chaotization properties at the presence 

of small polyharmonic perturbations of the magnetic moment.  
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1. Introduction 

 
Chaotic regimes in the angular/attitude motion of 

multibody systems/spacecraft and the corresponding 

many-sided research’s aspects are undoubtedly very 

important parts of modern non-linear mechanics, 

including spaceflight dynamics [1-42].  

One of the main multibody spacecraft’s schemes 

is the dual-spin spacecraft (DSSC) which represents 

the mechanical system of coaxial bodies and the 

single-rotor gyrostat. The versatile explorations of 

the DSSC/gyrostat’s dynamics were conducted in 

many research works devoted in different 

formulations to the analytical/numerical modeling 

of unperturbed/perturbed modes and to obtaining of 

exact/approximate solutions for the motion under 

influence of different external/internal disturbances 

(gravity, aerodynamic torques, dissipative/excitative 

effects from external environments, interactions 

between the system bodies, etc.) [e.g. 5-31]. 

Equally with numerous types of perturbations 

acting on the DSSC, the (electro)magnetic torque 

from the Earth’s magnetic field is the very important 

dynamical factor. It is needed to note that numerous 

works and publications were connected with the 

investigation of the attitude dynamics/control of the 

magnetic (magnetized) spacecraft, for example [32-

42]. Here we can underline the connection of the 

task of the attitude motion of the magnetized DSSC 

with classical tasks of the rigid body mechanics (the 

Euler, the Lagrange tops) [1-4].  

The "magnetic" torque arises due to DSSC 

usually contains internal electrical equipment with 

powerful inductive elements and magnets. Also this 

factor can be one of the main reasons of the chaos 

initiation in the DSSC dynamics. The consideration 

of connected causes and effects of the heteroclinic 

chaotization is the primary task of this paper. 

So, in this paper the chaotization analysis of the 

attitude dynamics of the magnetic/magnetized 

DSSC is provided. This analysis is based on the 

Melnikov function evaluation along heteroclinic 

trajectories in the phase space of the 

magnetic/magnetized DSSC, which performs an 

orbital motion on a circular equatorial orbit at the 

realization of the spin-stabilized attitude motion in 

the “cylindrical precession” regime, when the 

angular momentum of the DSSC is directed 

perpendicularly to the orbit’s plane. This motion 

regime is quite important for the practice because it 

corresponds (in ideal conditions) to one of the 

preferred regimes of the stationary attitude motions 

of the DSSC with the conservation of the spatial 

orientation of its longitudinal axes (especially it is 

important for communication satellites).  

The paper material is presented the continuation 

and expansion of the previous author’s analytical 

research [26] into the applied aria corresponding to 

the magnetic DSSC chaotic motion investigation. 

The main paper results connected with obtaining of 

analytical heteroclinic solutions and with the 

illustration of non-regular regimes of the motion 

dynamics. Also the paper results can be additionally 

investigated in aspects of non-trivial complex 

dynamical modes implementation with the help of 

modern simulation tools [43-49]. 
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2. Equations of the attitude dynamics of the 

magnetic/magnetized DSSC 

 
Let us by analogy with [26] consider the attitude 

dynamics of the DSSC which contains the internal 

permanent magnet or the inductive elements 

(current-carrying inductive coils) with the magnetic 

dipole moment m under the influence of the external 

magnetic field (and with corresponding magnetic 

restoring/overturning torque Mθ). Assume that the 

mass centre of the DSSC is moved along the 

circular equatorial orbit of a planet (e.g. the Earth) 

which has the ideal single dipole magnetic field. In 

conditions of the DSSC orbital motion on circular 

equatorial orbit we can consider the planet's 

magnetic field vector Borb as constant vector (Fig.1) 

which is orthogonal to the orbit plane (Borb is the 

tangent vector to the surface of the magnetic field 

(Fig.1)); the magnitude of this vector depends on the 

altitude of the circle equatorial orbit. 

The DSSC usually consist from two coaxial 

bodies (body #1 is a rotor; body #2 is a 

main/core/carrier body). The rotor-body rotates in 

the inertial space with an angular velocity ω1, and 

the main carrier body rotates with an angular 
velocity ω2. The angular velocity of the rotor-body 

differs from the angular velocity of the main carrier 

body on a vector of a relative rotation angular 

velocity σ about a common longitudinal DSSC axes 
(ω1= ω2+σ).  

 

 
 

Fig.1 The ideal single dipole model of the Earth’s 

magnetic field, and the constant magnetic 

field vector orbB  corresponding to the 

circle equatorial orbit 

 
We will use the following frames (Fig.2-a): 

OXYZ is the main inertial ("fixed") system of 

coordinates with origin O in the mass centre of the 

DSSC, where the axis OZ is collinear with the 

constant magnetic vector of the external magnetic 

field (k’ is the unit vector of the OZ axis) and then 

orbB
orb

B k' ; Ox2y2z2 is the connected principal 

system of coordinates of the carrier body (i, j, k are 

the corresponding unit vectors); and Ox1y1z1 – the 

connected principal system of coordinates of the 

rotor body.  

The axes Oz1 and Oz2 of the connected systems 

coincide with the common longitudinal axis of the 

DSSC's coaxial bodies. We assume that the main 

body has a triaxial inertia tensor, and the rotor is a 

body with the dynamical symmetry (the equatorial 

inertia moments are equal). 

 

 
(a) 

 
(b) 

Fig.2 Frames of the magnetic/magnetized 

DSSC's (a) and the corresponding analogy with 

the "heavy coaxial top" (b) 

 

Moreover, we consider the case (Fig.2-a) when 
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the DSSC's intrinsic magnetic moment is aligned 

with the DSSC’s longitudinal axis  mm k . 

The Euler general dynamical equations of the 

system can be written with the help of the low of the 

angular momentum changing in the rotating with the 

angular velocity ω2 frame Ox2y2z2 
e

2
K +ω ×K = M    (1) 

where K is the system angular momentum, 
e

M  – is 

the vector of external torques. 

The scalar form of the vector equation (1) 

represents the following system: 

 

 

 

 

1

1

1

1

e

x

e

y

e

z

Ap C B qr qC M

Bq A C pr pC M

Cr C B A pq M

C r M







 

    


   


   


   

    (2) 

where  , ,p q r  are the components of the carrier 

body's angular velocity 
2ω  in projections onto the 

axes of the Ox2y2z2 frame;   is the rotor angular 

velocity relatively the carrier body    ; 

 2 2 2 2, ,diag A B CI  is the triaxial inertia tensor 

of the carrier body in the connected frame Ox2y2z2; 

 1 1 1 1, ,diag A A CI  is the inertia tensor of the 

dynamically symmetrical rotor in the connected 

frame Ox1y1z1; 1 2 ,A A A   1 2 ,B A B   

1 2C C C   are the main inertia moments of the 

coaxial bodies system in the frame Ox2y2z2 

(including rotor);  1C r      the longitudinal 

angular moment of the rotor along Oz1; 
11 zC h    

the rotor relative angular moment in the carrier body 

frame Ox2y2z2. M   is the internal torque of the 

coaxial bodies interaction. Let us consider the 

following mass-inertia distribution A B C  . 

We ought to note that the orbital motion of the 

spacecraft can be considered as the motion fulfilled 

under the action of such perturbations as the 

magnetic torque, the gravity gradient torque, the 

small aerodynamics drag from the Earth’s 

atmosphere, and other disturbances (the solar 

pressure torque, etc.). These perturbations have 

magnitudes, which can essentially differ from each 

other.  

The torque of the magnetic interaction of the 

magnetic/magnetized DSSC with the external 

magnetic field is 

 

2 2 2

0
2 1 3

;

, ,

, ,0 ;
4

T

x y zOx y z

T m
orb orb

M M M

B m B
R

  

 
 



 

   

  

θ

θ

orbM m B

M       (3) 

Here µ0 is the magnetic permeability of free space 

  7

0 4 10 T m A     ; µm≈7.8∙10
22

 [A∙m
2
]

 
is the 

geomagnetic dipole moment;  R is the orbit’s 

altitude (relative the mass centre of the Earth); m is 

the magnetic moment of the DSSC 

(m~100÷1000 [A∙m
2
] – it corresponds, e.g.,  to the 

magnet of the ordinal system of the SC angular 

momentum shedding); parameters γi are the 

directional cosines of the axis OZ (the "fixed" 

inertial direction of the Borb vector) in the main body 

frame Ox2y2z2: 

 

 

 

1 2

2 2

3 2

cos , ,

cos , ,

cos ,

OZ Ox

OZ Oy

OZ Oz

  

  

  

i k'

j k'

k k'







 (4) 

The torque corresponding to the gravity gradient 

can be written in the form 

2 2 2

2 3 3 1 1 23

, ,

3
, , ,

T

G Gx Gy GzOx y z

T

G
I

I I I

M M M

C B A C B A

R


      

  

   

   
  

 

M

where µG=Gme=3.986∙10
14

 N∙m
2
/kg is the Earth’s 

mass-gravity parameter; i  are the directional 

cosines of the axis of the local normal to the circular 

orbit of the DSSC (the local direction to the gravity 

centre); and I A C    is the difference between 

the largest and the smallest inertia moment of the 

DSSC.  

Let us consider the attitude motion of the 

relatively small DSSC with normal distribution of 

the mass (without the extremely expressed inertia-

mass configuration like the “gravitational 

dumbbell”), when the difference of the inertia 

moments does not exceed δI={1÷10} kg∙m
2
. Then it 

is possible to estimate the comparative magnitudes 

of the main influences (gravitational and magnetic). 

If we take as initial conditions the parameters of the 

ordinal orbital motion (including geostationary 

orbits) and parameters of the ordinal small magnetic 

SC, the estimation follows: 

 

14 15

3 3

4 2

12 10 ; 8 10 ;

10 10 .
10

I
G

I
G

m

R R

m



  

   




θ

θ

M M

M M

  

As we can see, the magnitude of the gravity gradient 
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torque in the considered case is less than the value 

of the magnetic torque by three orders (on the 

average) - it corresponds to the significant 

predominance of the magnetic torque over others 

torques; and in this case the results/findings [26] are 

applicable, including the unperturbed general 

solutions for the magnetic DSSC attitude motion. 

So, in this research we will take into account 

only general influence, which corresponds to the 

magnetic torque. Then equations (2) take the form: 

 

 

 

2 2

2 1

2

;

;

0;

Ap C B qr q Q

Bq A C pr p Q

C r B A pq M







     

    

      

   (5) 

orbQ const B m     (6) 

We assume the following conditions: 

2 2 2 1 1, const 0.A B C A C        

Also in our research we will use the Hamiltonian 

form of equations in the well-known Andoyer–

Deprit canonical variables. The Andoyer–Deprit 

variables [11, 12] (l, L, I2, I3) are expressed through 

components of the system's angular momentum 

(Fig.2): 
2 2 22 2 2

, ,
T

x y zOx y z
K K K    K K  

2

2

3 2

3

;

;

;

T
L

l

T
I K

T
I L I


  



    



   



K k

K s K

K k





          (7) 

2

2

2

2 2

2

2 2

2

2

sin ;

cos ;

x

y

z

K Ap I L l

K Bq I L l

K C r L

  

  

   

           (8) 

The system Hamiltonian in the Andoyer–Deprit 

phase space has the form [e.g. 4-10]: 

 

0 01

22 2 2 2 2

2

1 2 1 2 1 2

;

sin co

;

s 1
,

2 2

LI L l l
T

A A A B

P

C

T

C

 

   
     

     

 



(9) 

where T – is the system's kinetic energy; P – is the 

potential energy; 1  is the small perturbed part 

of the Hamiltonian. In the considered case the 

potential energy corresponds to the "magnetic" 

torque (or, as it was described in [26], to the 

restoring/overturning torque from the system’s 

weight in the generalized coaxial Lagrange top) – it 

takes the form depending only on the nutation angle: 

cos ; sin
P

P Q M Q 



   


   (10) 

Repeating the main findings of the previous 

work [26] we underscore the full compliance (in a 

dynamic sense) of two mechanical models (Fig.2): 

the magnetic/magnetized DSSC (Fig.2-a) and the 

coaxial Lagrange top (the heavy coaxial top) motion 

(Fig.2-b). Here we have to note that the Lagrange 

top in the classical formulation [1-4] describes the 

angular motion of the heavy body about fixed point 

O when the gravity force W (the system weight) is 

applied in the point OW on the general longitudinal 

axis Oz2. In our consideration the both models (the 

magnetic DSSC and the heavy coaxial top) are 

reduced to the interconnected common case at the 

corresponding conversion of the torque's magnitude 

(depending on proper signs of the values): 

;orb WQ B m W OO     (11) 

Therefore, the paper results and conclusions will be 

applicable to the both tasks (the 

magnetic/magnetized DSSC, and generalized heavy 

coaxial Lagrange top).  
 

3. Heteroclinic analytical solutions for the 

angular momentum components  
 

Let us consider the angular motion of the 

magnetic/magnetized DSSC in the “cylindrical 

precession” regime in the case when the vector of 

the angular momentum K is directed strongly along 

the inertial ("fixed") axis OZ  KK k' coinciding 

with the vector of the external magnetic field 

 orb
B . In this case the system angular momentum 

K is the constant vector, and then we can rewrite the 

expressions (4) for the directional cosines, and the 

canonical Andoyer–Deprit momentums (7) as 

follows: 

2

2

2

1

2

2
3

,

,

x

y

z

K Ap

K K

K Bq

K K

K C r

K K








 




 

  

 


   (12) 

2

2

2

2 3

2

2

;

const;

cos ,

z

z

L K C r

I I K

K C r L

K K I



    



  


    


 (13) 

Using (12) it is possible to rewrite the 
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components of the magnetic torque: 

2 2

2 2 2

, ,0

, ,0

T

y x

Ox y z

T

QK QK

K K

QBq QAp

K K

 
  
 

 
  
 

θ
M

 (14) 

Finally the dynamical equations (5) take the form 

 

 

 

2

2

2

;

;

0;

Ap C B qr q QBq K

Bq A C pr p QAp K

C r B A pq M

     

    

      

    (15) 

Also, taking into account (13), we can write the 

final shape of the Hamiltonian 

 

2 2 2 2

2

1 2 1 2

22

1 2 2

sin cos

2

1

2

I L l l

A A A B

L L
Q

C C I

 
   

  

  
   

  

     (16) 

The Hamiltonian (16) does not depend on the 

canonical coordinates 2 3,  , then impulses 

2 3,I I  are constant; and the dynamical system is 

reduced to one degree of freedom  ,l L : 

 

 

0 0

1 1

, ;

, ;

; ;

; ;

L L

l l

L l

L l

L f l L g

l f l L g

f f
l L

g g
l L





  

 

 
  

 

 
  

 

   (17) 

Let us obtain the analytical solution for the 

heteroclinic orbits/polhodes  1 2S S  in the phase 

space of the angular velocity components {p, q, r, 

σ} (Fig.3) by full analogy with the previous results 

[10].  

Theorem. Assume the absence of the coaxial 

bodies interaction  0M  . Then we have the 

following heteroclinic solutions       , ,p t q t r t  

for the system (15): 

 
 

 
 

    

   

   

2 2

22 2

2

1

;

;

;

;

C B C
p t y t

A A B

q t s k y t E

EB
r t y t

B C

t r t
C

 



 
 



      


   
 


  


  (18) 

where 

 

 

 

0

0 0 2

2

0

0 1 2 02

4 exp

,

exp 4

M a
a E y t

k
y t

Mt a
E y a a a

k





 
 
 
 

  
   

    

 

with the set of constants: 

 

 

2

2

2

1

22 2

0

const 0;

;

2 ;

;

a k

a E k

a s k E

 

 

  

 

   

   

 

 

 

 

 

0

2 2

2 2

2 22 2

;

;

1 1

; ;

s
y E

k

A B

A C B C

B C A C

C A CH
s k

B A B B A B

 





     

 
 

 
 


 

 

 

   
22

2

2

1

2 0
0

2
2 2 2

0 0 0 2 0

1

2

1 2 ;

const;

2 ;

C
H T A D EA

A C

A
EA

C

C r
T T Q

K

T Ap Bq C r
C

     


  
      
  

 
  


   

 

 

   

 

22

2

2

1

2 2 2

1

2

1 2

; .

C
D B EB

T B C

B
EB

C

A C C B CQ
E M

K B A A B


    



  
        
   

 
  



 

 

The proof.  

Let us prove the theorem directly following to 

the algorithm which was used in the paper [10].  

We will use the polhodes geometry [1-3]. The 

polhode is the fourth-order curve in 3D-space 

(Fig.3) corresponding to the intersection of a kinetic 

energy ellipsoid and an angular momentum 

ellipsoid, which are defined with the help of the 

expressions for the dynamical theorems/laws of the 

changing of the kinetic energy and the angular 

momentum: 
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   

2
2 2 2

2 0

1

0

2

2 2

Ap Bq C r T
C

P P


    

  

 (19) 

 
22 2 2 2 2

2A p B q C r K     (20) 

With the help of (10) and (13) we can write the 

expressions (19) and (20) in the form  

 
2

2 2 2

2 2

1

2 2Ap Bq C r E C r T
C


      (21) 

 
22 2 2 2 2

2 2A p B q C r K DT        (22) 

with the following constants 
2

2 2 2

0 0 0 2 0

1

2 0
0

2

2 ;

const;

;
2

T Ap Bq C r
C

C r
T T Q

K

Q K
E D

K T


   

 
  

  

 (23) 

Based on a combination of the expressions (21) 

and (22) (using the multiplication of (21) by A with 

the subsequent subtraction of (22)) we obtain: 

 

 

   

2

2
2

2 2

1

2

2

2

2

B A B q

A C r E C r
C

C r T A D

 

 
      

 

    

 (24) 

Analogically, after the multiplication of (21) by 

B with the subsequent subtraction of (22) we receive  

 

 

   

2

2
2

2 2

1

2

2

2

2

A B A p

B C r E C r
C

C r T B D

 

 
      

 

    

 (25) 

The separation of a perfect square in (25) gives 

the equation for hyperbolae (corresponding curves 

are depicted at the coordinate plane Opr – Fig.3)  

 

 

2

2

2 2

2

A A B p

EB
C B C r F

B C

  

  
    

 

 (26) 

where   

 

 
22

2

2

1

2

1 2

F T B D

C
EB

B C

B
EB

C

  

   


  
      
  

  (27) 

Now we can use the shifted coordinate axes 

Opr  (Fig.3) and the scalable component of the 

angular velocity 

2

EB
r r

B C


 


   (28) 

As a result we write in the plane Opr  canonical 

form of the hyperbolas equation  

   2 2

2 2A A B p C B C r F       (29) 

The asymptotes of the hyperbolas correspond to 

the value F=0 and, therefore, to the following 

straight line equation: 

   2 2A A B p C B C r           (30) 

So, the equation 

0F     (31) 

defines the initial conditions of the motion 

realization along hyperbolas’ asymptotes. We can 

consider the equation (31) as an equation on value D  

 
22

2

2

1

0

1

2

1 2

F D D

C
D B EB

T B C

B
EB

C

  


    



  
        
   

   (32) 

Thereby, at the value D D  the system realizes the 

motion along the hyperbolas asymptotes.  

Let us choose the trivial initial condition for the 

component 0( 0) 0q t q    which is equivalent 

to taking as a time-datum the time-moment when 

the q-component takes on the zero-value. Then the 

equation (31) can be rewritten in the form of the 

quadratic equation for the initial value 0r (at 

arbitrary values 0p  and  ) 

 

2
2 2 22 0
0 2 0

1

22

2

2

1

2

1 2 0

C r
B Ap C r Q K

C K

C
EB

B C

B
EB

C

  
     

 

   


  
       
  

   (33) 

So, we can find the value 0r  as the root of the eq. 

(33), which guarantees the equality D D  and the 

motion along the hyperbolas asymptotes 

 (1,2)

0 0 0 ,r r f p     (34) 

From the eq. (24), taking into account a perfect 

square, the expression follows  
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 

 

2

2

2 2

2

B A B q

EA
C A C r H

A C

 

  
    

 

 (35) 

 

 
22

2

2

1

2

1 2

H T A D

C
EA

A C

A
EA

C

  

   


  
      

  

  (36) 

 

From (35) we obtain  

 

 

2

2 2 2

H B A B qEA
r

A C C A C

  
  

 
        (37) 

Also we can consider (35) as the canonical equation 

for ellipses on the coordinate plane Oqr (Fig.3). The 

substitution of the equality D D  into the 

expression (35) gives us the equation for the "large 

ellipses" (black curves S1S2 at the Fig.3), which 

correspond to the projections of the heteroclinic 

separatrices-polhodes: 

 

   2 2

2 2B A B q C A C r H              (38) 

where we use the following parameter 

   
22

2

2

1

2

1 2

C
H T A D EA

A C

A
EA

C

     


  
      
  

 

and a scalable component of the angular velocity  

2

EA
r r

A C


 


   (39) 

From the equation (30) we obtain  

 

 
2 2C B C

p r
A A B


 


   

also the following form is useful  

 

 
2 2C B C

p r E
A A B

 


     
 (40)  

It is needed to note, that the ellipse’s canonical 

equation (38) is written in the shifted frame Oqr .

 
 

Fig.3 The polhodes in the phase space of the angular velocity components 
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From (38) the expression follow 
2 2

2

2

s q
r

k


    (41) 

where 

 

 

 
2 22 2const; const

C A CH
s k

B A B B A B


   

 
 

The second equation (15) can be written as follows 

 2

2

0
EA

Bq A C r p
A C

  
    

 
 (42) 

With the help of (41) and (40) the last equation is 

reduced to the form 

 

 

 

2 2

2 2

2 2
2 2

2
0

s q
Bq A C

k

C B C s q
E

A A B k
 


  

  
     

   

 (43) 

The differential equation (43) contains a possible 

quaternary signs alternation, corresponded to the 

four heteroclinic orbits "saddle-to-saddle" 

 1 2S S . These four orbits form the "large 

ellipses". 

We can make the change of variables  
2 2

2

s q
x

k


    (44) 

From (44) the expressions follow  
2

2 2 2

2 2 2
;

k xdx
q s k x dq

s k x
   


 

Then the equation (43) is rewritten in a differential 

form 

 

   

 

2

2 2 2

2 2 2

k dx
Mdt

x E s k x

A C C B C
M

B A A B

 
 

   

 




 (45) 

The equation (45) includes two cases of signs of the 

x-variable. In the both cases we make corresponding 

substitutions 

 

 

2

2 2 2

0 0

2

2 2 2

1). ;

k dx
Mdt

x E s k x

y x E

x y E dx dy

y x E

k dy
Mdt

y s k x

 

 

 

 


 

   
   


    


  


 


   (46) 

 

2

2 2 2

0 0

2

2 2 2

2). ;

k dx
Mdt

x E s k x

y x E

x y E dx dy

y x E

k dy
Mdt

y s k x

 

 

 

 


 

   
    


     


   
 

 


        

As we can see from the expressions (46), the 

both cases give the interconnected equation again  
2

2 2 2

k dy
Mdt

y s k x
 


  (47) 

Taking into account the twoness of the initial 

condition  0 0y x E      from (47) the 

integral expression follows 

    0

22 2 2

2

0 0 0 0

2

;

;

y

y

dy

y s k y E y E

Mt

k

s
y y x E x

k

   

 



      




     



 (48) 

The expression (48) reduces to the standard integral 

   

 

 

0

0
2

2 1 0

2 2

2 1

22 2

0

;

; 2 ;

y

y

dy
y y

y a y a y a

a k a E k

a s k E

 

 

 
 

     

   



(49) 

where the antiderivative  y  has the following 

standard shape 

   

 

0

0

2

0 1 0 2 1 0

1
ln ; 0;

2 2

z E z a
a

a a z a a z a z a
E z

z


 

   


 

From (49) we get the solution for the equation (47)  

     0

0 2
exp

M a
E y t E y t

k


 

  
 
 

 (50) 

After transformations the exact explicit 

analytical solution for the time-series y(t) follows 

 

 

 

0

0 0 2

2

0

0 1 2 02

4 exp

exp 4

M a
a E y t

k
y t

Mt a
E y a a a

k





 
 
 
 

  
   

    

    (51) 
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It is needed to note, that the quadrature (49) is 

quite frequent for heteroclinic solutions in rigid 

body dynamics [e.g. 7-10]. 

Making back substitutions we get the exact 

explicit analytical heteroclinic parametrized 

solutions for all components of the angular velocity 

      , ,p t q t r t : 

 
 

 
 

    

   

   

2 2

22 2

2

1

;

;

;

C B C
p t y t

A A B

q t s k y t E

EB
r t y t

B C

t r t
C

 



 
 



      


   
 


  


      (52) 

The theorem is completely proved. 

 

We have to additionally underline, that the 

heteroclinic solutions also can be obtained using  

functional  transformations of the general 

solutions [26] at the condition of the hyperbolic 

singularity of the elliptic integrals and functions 

(the elliptic modulus k=1), when the elliptic 

functions express in terms of hyperbolic 

functions. However, the considered way (based 

on the theorem’s proof) of the heteroclinic 

solutions obtaining is the preferable, natural and 

geometrically clear technique. 

Figure (Fig.4) demonstrates the validity of 

the solutions (52) as the comprehensive 

coincidence of the calculation results (by the 

analytical dependences - points) with the 

numerical integration results (lines). The upper 

graphs (Fig.4-a) correspond to the first root 
(1)

0r  

of the quadratic equation (31), and the graphs 

(fig.4-b) correspond to the second root 
(2)

0r . 

(a) 

 

(b) 

Fig.4  The heteroclinic dependences: 
2

2 2 2 1 115, 10, 6, 5, 4 [ ];A B C A C kg m     
2 2 2

020 [ ]; 3 [ ]; 1.5[1/ ]Q kg m s kg m s p s     

a).    
(1) (1)

0 0 03.262; -2.512r r       [1/s]  

b).   
(2) (2)

0 0 0-0.597; 1.347r r       [1/s]  
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It is worth to note that the solutions (52) allow the 

easy transformation to the Andoyer–Deprit 

heteroclinc dependences: 

     

 
 

 

 

  

  
 

 

2 2

2 2

2

22

2 2

2 2

2 2

;

arcsin

arcsin ;

arcsin ;

L t C r t C y t W

Ap t
l t

I L t

Vy t

I C y t W

VL t W
l L t

C I L t

    

 


 

 


 



 (53) 

where   

 

 

 

2 2

2

2

const;

const .

AC B C
V

A B

B
W C E

B C


 



   


 

The solutions (52) and (53) generalize the well-

known heteroclinic dependencies for the free rigid 

body and for free coaxial bodies, which were used 

in numerous research works, for example [7-10, 13, 

23, 24].  

 

4. The motion chaotization analysis  

 

Let us examine some features of the system 

motion chaotization at the presence of the 

perturbation corresponding to the action of small 

complex variations/oscillations in the magnetic 

moment of the DSSC   m m m t  , or in the 

magnet Earth-dipole   orb orbB B B t  , or in 

the case of the variations of the both values 

composition. Then this complexified perturbation 

can be expressed by the use of the time-series of the 

value Q (6) in the form of the sum of the generating 

“unperturbed” constant part 0Q  and the small 

varying part  1Q t : 

      0 1 0 1Q t Q Q t Q Q t     (54) 

 
 1

0

0

; ;orb

Q t
Q B m Q t

Q
   

where the dimensionless small parameter ε scales 

the smallness of the perturbation – this parameter 

can be defined by standard ways, but in this research 

we do not focus on this aspect. Indeed, in our 

research we will use the shape of the varying part, 

which is actual practically in any case of a 

periodical perturbation and corresponds to the 

general form of the expansion in a Fourier series 

(taking into account N harmonic components) [21]: 

     
0

sin cos
N

n p n p

n

Q t a n t b n t 


  
    (55) 

where Tp is the main period of the perturbation; 

2p pT  - is the main frequency of perturbation, 

,n na b  are the constant Fourier coefficients. At the 

presence of the perturbation (55) the perturbed 

Hamiltonian can be rewritten  

 

 

2 2 2 2

2

1 2 1 2

22

0

1 2

1

2

1

0

2

0

0

sin cos

2

1
;

2

I L l l

A A A B

L L
Q

C C I

L
Q Q t

I

 

 
  

  

  
   

 







 (56) 

Then we have the following right parts (17) of the 

dynamical equations 

   

 
   

 
   

2 2

2

2 2

2 1 2 1 2

0

2 2

0

02

1 1
, sin cos ;

1 sin cos
,

;

0;

sin cos ,

L

l

L

N

l n p n p

n

f l L I L l l
B A

l l
f l L L

C A A A B

Q

C I

g

Q Q t
g a n t b n t

I
  



  
   
 

  
     

  
 
 






     




where 0

2

Q

I
  . 

Then the Melnikov function in considered case 

takes the similar with results [29-31, 10, 23] form: 

     0 0( ), ( )L lM t f l t L t g t t dt




     (57) 

where the  ( ), ( )Lf l t L t  can be directly expressed 

through heteroclinic dependences      , ,p t q t r t  

based on the expressions (8): 

   

   

2 2

2

1 1
, sin cos

1 1

Lf l L I L l l
B A

Ap t Bq t
B A

 
    
 

 
  
 

 

Then the Melnikov function is evaluated as follows 
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 

   

   

   

0

0 0

0

0 0

0

0 0

( ) ( )

sin cos

cos sin

sin cos ,

N

n p n p

n

N
n

s n p n p

n

n

c n p n p

M t Ap t Bq t

a n t t b n t t dt

J a n t b n t
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The function  g t  is the odd-function tended to 

zero (at t  ). Then the integrals (58) are  

convergent to the corresponding constants: 
   

0; const
n n

c s nJ J    (59) 

Finally we obtain the polyharmonic form of the 

Melnikov function: 

        0 0 0

0

cos sin
N

n

s n p n p

n

M t J a n t b n t  


  (60) 

Here we ought to note the possibility of the 

“quasiperiodic Melnikov function” building based 

on the S.Wiggins’ methodology [30, 31] – this 

approach gives the same structure of the Melnikov 

function (60). 

The polyharmonic form (60) defines the 

infinitude of simple zero-roots of the Melnikov 

function, that eventually confirms the fact of the 

local heteroclinic chaos initiation; the perturbed 

heteroclinic orbits form complicated heteroclinic 

nets with the corresponding production of the 

chaotic layer (the area of the phase-space with the 

dense cloud of the separate points of the Poincaré’s 

intersection) near the heteroclinic separatrix region. 

This is one of the main reasons of the DSSC’s 

complex tilting motion. 

Certainly, there are the separate combinations of 

the Fourier coefficients which eliminate the roots of 

the Melnikov function – these combinations 

correspond to the antichaotization conditions and 

can be found in the special research. 

5. Numerical modelling results  

 

In the previous section we showed the fact of 

the heteroclinic chaotization using the Melnikov’s 

method. Now we can give numerical illustrations of 

the chaotic properties based on the Poincaré sections 

(Fig.5), the time series, polhode 3D-curve plotting 

and the heteroclinic nets (Fig.6). The indicated 

Poincaré sections were plotted based on the 

“stroboscopic” condition of the main phase 
pt  

repetition  mod 2 0pt  
 

 in the dimensionless 

Andoyer's-Deprit's phase space  2,l L I .  

First of all, we have to indicate the production 

of the chaotic layer near the heteroclinic separatrix 

region – it is showed as a cloud of blue points at the 

figures (Fig.5). Also at the figures (Fig.5) we can 

see the primary and secondary chaotic layers (in the 

regions of the primary and secondary separatrix 

bundles with the meander-line tori), and the "islands 

of regularity" – this is the phase portrait’s areas 

corresponding to local oscillations regimes into the 

chaotic layer. 

The heteroclinic nets were plotted as a 

collection of the Poincaré images and preimages 

(corresponding  to the separated generations) of the 

unperturbed separatrix polhode's points.  

So, as we can see, all of the standard features of 

the chaotic modes are realized: the Poincaré sections 

have the chaotic layers; the time-series of the 

angular velocity components are complex and 

oscillating with variable (irregular) amplitudes; the 

heteroclinic nets are tangled. 

 

Conclusion 
 

Heteroclinic dynamics of the magnitized DSSC 

was examined in the case of the “cylindrical 

precession”. The heteroclinic analytical solutions for 

the polhode-separatrix in the phase space of the 

angular velocity components were obtained. These 

heteroclinic solutions are the main result of the 

paper, which can be applied to the investigation and 

modeling of chaotic properties of the 

magnetic/magnetized DSSC attitude dynamics in 

many cases of perturbations and conditions of the 

attitude motion. 

As an example of the chaotization analysis, the 

case of polyharmonic perturbations was studied 

based on the Melnikov’s methodology. Also the 

corresponding numerical modeling of the 

magnetic/magnetized DSSC attitude motion was 

fulfilled.  
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Fig.5. Poincaré sections  mod 2 0pt    
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 Fig.6. The chaotic features of the heteroclinic dynamics of the magnetic/magnetized DSSC 

 

a) The time-history of the angular velocity components: p(t) – black;  q(t) – red; r(t) – blue  

(points – unperturbed solutions; lines – perturbed dependences) 

b) The Poincaré map of the perturbed separatrix 

c) The Poincaré map as forward-images of the unperturbed separatrix (the corresponding heteroclinic net) 

d) The Poincaré mapas set of preimages-images of the unperturbed separatrix (the heteroclinic net) 
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The modeling illustrated all of the standard 

features of the chaotic modes: the Poincaré sections 

have the chaotic layers; the time-series of the 

angular velocity components are complex 

oscillating with variable (irregular) amplitudes; the 

heteroclinic nets are tangled. 

These indicated chaotic dynamical properties 

in the practice of the real space-missions result in 

the DSSC chaotic attitude motion and in 

failures/anomalies of its operation; also the desired 

target motion of the DSSC due to this chaos 

phenomenon is inevitably involved in the chaotic 

regime, and, therefore, the stabilized regime of the 

magnetic/magnetized DSSC “cylindrical 

precession” can be lost.  

The paper results are also applicable to the task 

of the generalized heavy coaxial Lagrange top; and, 

on the contrary, in the case when the magnetic 

moment of the DSSC is equal to zero, the 

investigation results are directly reduced to the 

Euler coaxial top [5-10]. 
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